Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608882

RESUMO

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Assuntos
Cádmio , Patos , Microplásticos , Estresse Oxidativo , Pâncreas , Animais , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Microplásticos/toxicidade , Fibrose , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 906: 167258, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741394

RESUMO

Nanoplastics in environments are potentially detrimental to plant growth. Appropriate doses of biochar can alleviate the phytotoxicity of nanoplastics under hydroponic conditions. However, the specific mechanisms remain unknown. In this study, the effects of biochar-derived dissolved matter (BCDM) and biochar-derived particulate matter (BCPM) on the phytotoxicity of polyvinyl chloride (PVC) nanoplastics were investigated and the underlying influencing mechanisms were elucidated. The results showed that PVC nanoplastics can be adsorbed and taken up by lettuce roots, inducing oxidative damage to lettuce shoots and roots and reducing their fresh weight. BCDM can promote the aggregation and sedimentation of PVC nanoplastics, and BCPM can adsorb PVC nanoplastics and cause barrier effect, which will reduce the exposure dose of PVC nanoplastics. Furthermore, nutrients in BCDM can promote lettuce growth. As a result, the presence of both BCDM and BCPM significantly mitigated the oxidative stress of lettuce shoots and roots as demonstrated by the decrease in hydrogen peroxide and malondialdehyde levels (p < 0.05). Meanwhile, lettuce biomass was significantly increased after addition of BCDM and BCPM compared to the single PVC treatment group (p < 0.05). This study provides a theoretical basis for finding solutions to alleviate the phytotoxicity of nanoplastics.


Assuntos
Microplásticos , Material Particulado , Microplásticos/toxicidade , Material Particulado/toxicidade , Cloreto de Polivinila/toxicidade , Carvão Vegetal/farmacologia , Lactuca
3.
J Agric Food Chem ; 71(49): 19772-19782, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039335

RESUMO

Biomicroplastics (BMPs) will be produced during bioplastic degradation (i.e., polylactic acid), although bioplastics have been widely used for food packaging. Like conventional microplastics (MPs), BMPs would be mistakenly ingested into the body through diet or drinking water, but their health risks in vivo are poorly understood. Here, we deeply compared the toxicity difference between irregularly shaped polylactic acid (PLA-MPs, 16-350 µm) and polyvinyl chloride (PVC-MPs, 40-300 µm) MPs in growing mice. After six weeks of exposure, PLA-MP exposure resulted in more severe inhibition of the mice's weight gain than PVC-MPs did. Both PLA- and PVC-MPs significantly elevated the levels of oxidative stress. Moreover, significant changes including altered transcriptional profiles and significantly differentially expressed genes in liver and colon transcription levels were observed in the PVC- and PLA-MP groups. Compared with PVC-MPs, PLA-MPs have a stronger effect on lipid metabolism and digestive systems. PLA-MPs also caused gut microbiota dysbiosis, significantly interfering with the relative abundance of microbiota and altering microbial diversity. These findings indicated the toxicities of PLA-MPs in growing mice were not significantly reduced compared to PVC-MPs, which would also provide new insights for re-examining bioplastic safety.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos/toxicidade , Plásticos , Cloreto de Polivinila/toxicidade , Poliésteres/toxicidade , Biopolímeros , Poluentes Químicos da Água/análise
4.
Water Sci Technol ; 88(9): 2465-2472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966195

RESUMO

The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.


Assuntos
Envelhecimento da Pele , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Matéria Orgânica Dissolvida , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/química , Substâncias Húmicas/análise
5.
Ecotoxicol Environ Saf ; 267: 115637, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944461

RESUMO

A variety of microplastics (MPs) have become ubiquitous environmental pollutants, leading to inevitable human contact and health impacts. Most previous research has explored the toxic effects of a single type of MPs exposure. However, the effects of co-exposure to both common types of MPs, polyvinyl chloride (PVC) and polystyrene (PS) MPs on mammals have not been explored. Here, adult mice were exposed to PS-PVC (1.0 µm PS and 2.0 µm PVC both at the concentration of 0.5 mg/day) for 60 days. The results showed that PS-PVC co-exposure-induced hepatotoxicity was evidenced by liver histopathological changes, the release of inflammatory cytokines, and the activation of oxidative stress. Moreover, the intestinal mucosal barrier was damaged after PS-PVC treatment. The results of 16S rRNA gene sequencing reported there was a marked shift in the gut microbial structure accompanied by decreased relative abundances of probiotics, such as Clostridium, Lachnospiraceae_UCG-006, Desulfovibrio, Clostridiales_unclassified and Ruminococcaceae_unclassified and increased the conditional pathogen abundances, such as Erysipelatoclostridium. Furthermore, the triglyceride (TG) and total cholesterol (TCH) expression levels in the serum and liver were increased after PS-PVC co-exposure. Serum metabolomics analysis showed that there were 717 differential expression metabolites found in the positive- and negative-ion modes, including 476 up-regulated and 241 down-regulated, mainly enriched in butyrate metabolism, thiamine metabolism, and phenylacetate metabolism. In addition, remarked changes in the gut microbiota and serum metabolic profiles were closely related to hepatic and intestinal injuries after PS-PVC co-exposure. These results have provided new insights into the toxic effects of PS and PVC MPs co-exposure through the gut-liver axis and the health risks of PS and PVC MPs should be paid more attention to humans.


Assuntos
Microbioma Gastrointestinal , Poliestirenos , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , RNA Ribossômico 16S/metabolismo , Fígado , Homeostase , Mamíferos
6.
Chemosphere ; 341: 140088, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678598

RESUMO

Plastics are widely used in industry and households, but improper disposal has caused their accumulation in aquatic systems worldwide. As a result, mechanical and photochemical processes break down these plastics into microplastics or nano plastics, posing a severe threat to marine organisms and humans as they enter the food chain. This study investigates the effect of Polyvinyl chloride (PVC) and Polyvinyl alcohol (PVA) microplastics in zebrafish by using multi-spectral imaging (MSI), Optical Coherence Tomography (OCT), and Biospeckle OCT (bOCT). These techniques allow for long-term studies in the fish without invasive procedures in real-time. Zebrafish were exposed to Nile red labeled PVC and PVA for 21 days with 500mg/L concentration. Image acquisition and analysis were performed every five days till the end of the study. MSI images revealed deposition of microplastics in the gills region of the fish; some diffused deposition was seen throughout the body in the PVA group towards the end of the experiment. The effect of these MPs on the structure of the gills and their exact location was determined by capturing OCT images. bOCT was used to determine the average speckle contrast for all the OCT images to determine the change in biological activity within the gills region. An increase in bioscpeckle contrast was observed for the MPs treated groups compared to the control group. PVC appeared to cause a more considerable rise in activity compared to PVA. The results indicated that the MPs exert stress on the gills and increase activity within the gills, possibly due to the blockage of the gills and disruption of the water filtration process, which could be monitored non-invasively only by using bOCT. Overall, our study demonstrates the usefulness of non-invasive, robust techniques like MSI, bOCT, and biospeckle for long-term zebrafish studies and real-time analyses.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Peixe-Zebra , Álcool de Polivinil/toxicidade , Tomografia de Coerência Óptica , Poluentes Químicos da Água/toxicidade , Cloreto de Polivinila/toxicidade
7.
Am J Ind Med ; 66(12): 1033-1047, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742097

RESUMO

BACKGROUND: Plastic debris pervades our environment. Some breaks down into microplastics (MPs) that can enter and distribute in living organisms causing effects in multiple target organs. MPs have been demonstrated to harm animals through environmental exposure. Laboratory animal studies are still insufficient to evaluate human impact. And while MPs have been found in human tissues, the health effects at environmental exposure levels are unclear. AIM: We reviewed and summarized existing evidence on health effects from occupational exposure to MPs. Additionally, the diverse effects documented for workers were organized by MP type and associated co-contaminants. Evidence of the unique effects of polyvinyl chloride (PVC) on liver was then highlighted. METHODS: We conducted two stepwise online literature reviews of publications focused on the health risks associated with occupational MP exposures. This information was supplemented with findings from animal studies. RESULTS: Our analysis focused on 34 published studies on occupational health effects from MP exposure with half involving exposure to PVC and the other half a variety of other MPs to compare. Liver effects following PVC exposure were reported for workers. While PVC exposure causes liver toxicity and increases the risk of liver cancers, including angiosarcomas and hepatocellular carcinomas, the carcinogenic effects of work-related exposure to other MPs, such as polystyrene and polyethylene, are not well understood. CONCLUSION: The data supporting liver toxicity are strongest for PVC exposure. Overall, the evidence of liver toxicity from occupational exposure to MPs other than PVC is lacking. The PVC worker data summarized here can be useful in assisting clinicians evaluating exposure histories from PVC exposure and designing future cell, animal, and population exposure-effect research studies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , Exposição Ambiental , Fígado , Poluentes Químicos da Água/toxicidade
8.
Neurol India ; 71(3): 531-535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322752

RESUMO

Background: Toxic encephalopathy is a spectrum of central nervous system disorders caused by exposure to toxins, especially from occupational workplace. Polyvinylchloride (PVC) is a synthetic chemical polymer that is used widely in daily activities of living. PVC is produced by polymerization of monomer units of vinyl chloride. Its manufacturing requires multiple procedures and additives for heat and light stabilization involving heavy metals. Objective: In this novel case series, we present the diverse clinical presentation of 10 patients, working in plastic recycling factory having inhalational exposure to PVC fumes, manifesting as acute toxic encephalopathy. Materials and Methods: All the patients were screened for the causes of acute encephalopathy including heavy metals, methanol poisoning, and organotins along with arterial blood gas analysis, brain imaging, and electroencephalogram. Memory loss, confusion, vertigo, headache, and nausea were complained in all the patients while seizure occurred in three patients. Neurocognitive status was grossly impaired in all the patients. Metabolic acidosis in presence of hyponatremia and/or hypokalemia was observed in nine cases. Five of the patients were having evidence of white matter involvement in brain imaging. The screening for heavy metal, methanol, and organotin were negative. Hemodialysis was done in six patients. Recovery was good in everyone and the average discharge was by 10.8 days (range: 2-25 days). All the patients were symptom-free at 3-months follow-up. Conclusion: Early suspicion and aggressive management can have favorable outcome in PVC toxic encephalopathy. Occupational hazards due to PVC toxicity are increasing in the present industrial era but it is very less identified.


Assuntos
Encefalopatias , Metais Pesados , Síndromes Neurotóxicas , Exposição Ocupacional , Humanos , Cloreto de Polivinila/toxicidade , Metanol , Exposição Ocupacional/efeitos adversos , Encefalopatias/induzido quimicamente , Encefalopatias/diagnóstico por imagem , Síndromes Neurotóxicas/etiologia
9.
J Toxicol Environ Health A ; 86(11): 347-360, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073468

RESUMO

Recycled polyvinyl chloride (PVC) microplastics have been detected in the aquatic environment. These recycled microparticles contain chemicals that are released into the environment reaching different organisms. Although the problem of the presence of recycled PVC microparticles in the environment is evident, the toxicological consequences of this contaminant to exposed organisms remains to be better determined. The aim of this study was to investigate the toxicity attributed to exposure to environmentally relevant concentrations of recycled PVC microplastics in adult zebrafish (Danio rerio). The experimental groups were: negative control, vehicle control, positive control, and recycled microplastics (20 ± 5 µm) at 5, 10 or 20 µg/L. Zebrafish (D. rerio) were exposed to respective treatments for 96 hr. Locomotion and oxidative status parameters were measured and mortality recorded. The positive control group presented increased mortality rates and decreased locomotor activity. Animals from the vehicle group did not show marked differences. Finally, no significant disturbances were found in survival rate, locomotion pattern and oxidative status of animals exposed to recycled PVC microparticles at 5, 10 or 20 µg/L. Taken together our results suggest that recycled PVC microplastics in this particle size range do not appear to exert harmful effects on exposed adult D. rerio. However, these results need to be carefully observed due to limitations including size of particle and duration of exposure parameters that might affect ecological consequences. It is suggested that additional studies applying other particles sizes and chronic exposure are needed to more comprehensively verify the toxicity of the contaminant investigated here.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Peixe-Zebra , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
10.
J Hazard Mater ; 452: 131326, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027925

RESUMO

Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.


Assuntos
Poliestirenos , Tenebrio , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Tenebrio/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Larva/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Cloreto de Polivinila/toxicidade
11.
Ecotoxicol Environ Saf ; 252: 114618, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774799

RESUMO

As a burgeoning pollutant, microplastics (MPs) has elicited global concern. However, ecological effects and mechanisms of MPs on plant-soil system are still poorly understood. In the present study, the impacts of polyvinyl chloride microplastics (PVC-MPs) on maize (Zea mays L.) seedlings growth and physiological traits and soil properties were discussed through a 30-day pot experiment. Results showed that PVC-MPs had greater toxicity effect on seedlings shoot biomass than root biomass. To defense the impact of PVC-MPs, the superoxide dismutase and catalase activities in seedlings leaf were stimulated. Moreover, the adhesion of MPs on soil particles increased, and soil microorganism, enzymes, and nutrients were altered significantly with increasing content of PVC-MPs. Notably, soil nitrate nitrogen decreased significantly with increasing content of PVC-MPs, whereas soil ammonium nitrogen was promoted under lower contents (0.1% and 1%) of PVC-MPs. Redundancy analysis indicated that soil nitrate nitrogen and ammonium nitrogen can explain 87.4% and 7.7% of variation in maize seedlings growth and physiological traits, respectively. These results display that maize seedlings shoot is more susceptible to the impact of PVC-MPs and soil available nitrogen is the primary limiting factor on maize seedlings growth and physiological traits triggered by PVC-MPs. Impacts of PVC-MPs on maize seedlings growth and physiological traits by nitrogen depletion lead to the possible yield and economic loess and potential risks due to the over use of nitrogen fertilizers.


Assuntos
Compostos de Amônio , Microplásticos , Plântula , Plásticos/toxicidade , Zea mays , Cloreto de Polivinila/toxicidade , Nitratos/toxicidade , Solo , Nitrogênio , Compostos Orgânicos
12.
Ecotoxicol Environ Saf ; 251: 114526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634477

RESUMO

The extensive use of plastic products and rapid industrialization have created a universal concern about microplastics (MPs). MPs can pose serious environmental risks when combined with heavy metals. However, current research on the combined effects of MPs and hexavalent chromium [Cr(VI)] on plants is insufficient. Herein, a 14-day hydroponic experiment was conducted to investigate the impact of PVC MPs (100 and 200 mg/L) and Cr(VI) (5, 10, and 20 µM) alone and in combination on sweet potato. Results showed that combined Cr(VI) and PVC MPs affected plant growth parameters significantly, but PVC MPs alone did not. The combined application of PVC MPs and Cr(VI) resulted in a decrease in plant height (24-65%), fresh biomass per plant (36-71%), and chlorophyll content (16-34%). Cr(VI) bioaccumulation increased with the increase in its doses, with the highest concentration of Cr(VI) in the leaves (16.45 mg/kg), stems (13.81 mg/kg), and roots (236.65 mg/kg). Cr(VI) and PVC MPs-induced inhibition varied with Cr(VI) and PVC MPs doses. Osmolytes and antioxidants, lipid peroxidation, and H2O2 contents were significantly increased, while antioxidant enzymes except CAT were decreased with increasing Cr(VI) concentration alone and mixed treatments. The presence of PVC MPs promoted Cr(VI) accumulation in sweet potato plants, which clearly showed severe toxic effects on their physio-biochemical characteristics, as indicated by a negative correlation between Cr(VI) concentration and these parameters. PVC MPs alone did not significantly inhibit these parameters. The findings of this study provide valuable implications for the proper management of PVC MPs and Cr(VI) in sweet potato plants.


Assuntos
Ipomoea batatas , Microplásticos , Plásticos , Cloreto de Polivinila/toxicidade , Peróxido de Hidrogênio , Cromo/toxicidade , Antioxidantes
13.
Chemosphere ; 312(Pt 1): 136996, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336021

RESUMO

The RTgill-W1 (gill), RTG-2 (gonad), and RTL-W1 (liver) cell lines derived from a freshwater fish rainbow trout (Oncorhynchus mykiss), were used to assess the toxicity of polyethylene terephthalate (PET) and two forms of polyvinyl chloride (PVC). Two size fractions (25-µm and 90-µm particles) were tested for all materials. The highest tested concentration was 1 mg/ml, corresponding to from 70 000 ± 9000 to 620 000 ± 57 000 particles/ml for 25-µm particles and from 2300 ± 100 to 11 000 ± 1000 particles/ml for 90-µm particles (depending on the material). Toxicity differences between commercial PVC dry blend powder and secondary microplastics created from a processed PVC were newly described. After a 24-h exposure, the cells were analyzed for changes in viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and reactive oxygen species (ROS) generation. In addition to the microplastic suspensions, leachates and particles remaining after leaching resuspended in fresh exposure medium were tested. The particles were subjected to leaching for 1, 8, and 15 days. The PVC dry blend (25 µm and 90 µm) and processed PVC (25 µm) increased ROS generation, to which leached chemicals appeared to be the major contributor. PVC dry blend caused substantially higher ROS induction than processed PVC, showing that the former is not suitable for toxicity testing, as it can produce different results from those of secondary PVC. The 90-µm PVC dry blend increased ROS generation only after prolonged leaching. PET did not induce any changes in ROS generation, and none of the tested polymers had any effect on viability or EROD activity. The importance of choosing realistic extraction procedures for microplastic toxicity experiments was emphasized. Conducting long-term experiments is crucial to detect possible environmentally relevant effects. In conclusion, the tested materials showed no acute toxicity to the cell lines.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Oncorhynchus mykiss/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Cloreto de Polivinila/toxicidade , Cloreto de Polivinila/metabolismo , Polietilenotereftalatos/toxicidade , Polietilenotereftalatos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Linhagem Celular
14.
Environ Pollut ; 316(Pt 2): 120617, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356886

RESUMO

Microplastics (MPs) undergo various aging processes and interact with diverse pollutants in the environment. In the present study, we investigated the influence of ultraviolet (UV) aging on the adsorption of organic pollutants by polyvinyl chloride microplastics (mPVC) and explored toxicity variations among pristine, aged, and pollutant-loaded mPVCs to zebrafish. Irradiation of UV for 30 d significantly changed the physiochemical properties of mPVC, leading to more oxygen-containing groups and free radicals (1O2, ·O2-, and ·OH) on mPVC surfaces. The aging process reduced the adsorption of mPVC against a hydrophobic compound chlorpyrifos (CPF) but enhanced the adsorption against a moderately hydrophilic compound erythromycin (ERY). Ingestion of CPF- and ERY-loaded mPVCs resulted in bioaccumulation of the two compounds in zebrafish, suggesting a carrier effect of mPVCs. In toxicity tests, the aged mPVC caused severer gut damages, stronger oxidative stresses, and greater interference with the gut microbiota in zebrafish than the pristine mPVC. The CPF and ERY-loaded mPVCs produced lower oxidative stresses in zebrafish than mPVCs alone, due to fewer radicals on mPVC surfaces after the adsorption of organic contaminants. Notably, the CPF and ERY-loaded mPVCs presented greater effects on fish swimming behaviors and gut microbial compositions, which was associated with the released CPF and ERY from mPVCs within the zebrafish. Overall, the present study demonstrated significant influences of UV-aging and the adsorbed pollutants on the toxicological effects of MPs and highlighted the necessity to perform toxicity studies of MPs using more environmentally relevant MPs.


Assuntos
Clorpirifos , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Peixe-Zebra , Plásticos/química , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Clorpirifos/toxicidade , Adsorção , Envelhecimento
15.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432032

RESUMO

Globally, plastics are used in various products. Concerns regarding the human body's exposure to plastics and environmental pollution have increased with increased plastic use. Microplastics can be detected in the atmosphere, leading to potential human health risks through inhalation; however, the toxic effects of microplastic inhalation are poorly understood. In this study, we examined the pulmonary toxicity of polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) in C57BL/6, BALB/c, and ICR mice strains. Mice were intratracheally instilled with 5 mg/kg of PS, PP, or PVC daily for two weeks. PS stimulation increased inflammatory cells in the bronchoalveolar lavage fluid (BALF) of C57BL/6 and ICR mice. Histopathological analysis of PS-instilled C57BL/6 and PP-instilled ICR mice showed inflammatory cell infiltration. PS increased the NLR family pyrin domain containing 3 (NLRP3) inflammasome components in the lung tissue of C57BL/6 and ICR mice, while PS-instilled BALB/c mice remained unchanged. PS stimulation increased inflammatory cytokines, including IL-1ß and IL-6, in BALF of C57BL/6 mice. PP-instilled ICR mice showed increased NLRP3, ASC, and Caspase-1 in the lung tissue compared to the control groups and increased IL-1ß levels in BALF. These results could provide baseline data for understanding the pulmonary toxicity of microplastic inhalation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microplásticos , Camundongos , Humanos , Animais , Cloreto de Polivinila/toxicidade , Poliestirenos/toxicidade , Plásticos , Polipropilenos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos Endogâmicos ICR , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
16.
Environ Sci Technol ; 56(20): 14627-14639, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36173153

RESUMO

Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.


Assuntos
Plásticos , Poluentes Químicos da Água , Hidrolases de Éster Carboxílico , Humanos , Organofosfatos/toxicidade , PPAR gama , Fosfatos , Plásticos/toxicidade , Polietileno , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/análise
17.
Chemosphere ; 308(Pt 2): 136342, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087717

RESUMO

Molecular docking, molecular dynamics modelling, and fractional factorial design methodologies were used in the current work to examine the harmful effects of ten microplastic (MPs) such as polystyrene (PS), polyvinylchloride (PVC), polyurethane (PU), polymethyl methacrylate (PMMA), polyamide (PA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polychloropene (PCP) and polycarbonate (PC) on the aquatic organism (zebrafish). The toxicity was evaluated based on the docking of the MPs on cytochrome P450 (CYP P450) protein crystals. The binding affinities (ΔG) followed the order, PC (-6.9 kcal/mol) > PET (-6.1 kcal/mol) > PP (-5.8 kcal/mol) > PA (-5.6 kcal/mol) > PS (-5.1 kcal/mol) > PU (-4.1 kcal/mol) > PMMA (-3.9 kcal/mol) > PCP (-3.3 kcal/mol) > PVC (-2.4 kcal/mol) > PE (-2.1 kcal/mol). The primary driving factors for the binding of the MPs and the protein were hydrophobic force, and hydrogen bonding based on the molecular dynamics analysis and surrounding amino acid residues. Furthermore, a 210-5 fractional factorial design method was estimated to identify the main effect and second-order effects of MPs in a composite contamination system on binding affinity/energy to CYP450 receptor protein of zebrafish, combined with a fixed effects model. The findings showed that different MPs combinations had varying impacts on aquatic toxicity; as a consequence, the best combination of MPs with the lowest aquatic toxicity effect could be excluded. The factorial designs showed that the PU-PS and PP-PA combination and single PCP, has the most significant main effect on CYP450 receptor protein of zebrafish which translates to an optimum toxicity level of -4.61 kcal/mol. The investigation offers a theoretical foundation for identifying the hazardous impacts of MPs on aquatic life.


Assuntos
Microplásticos , Plásticos , Aminoácidos , Animais , Organismos Aquáticos , Simulação de Acoplamento Molecular , Nylons , Plásticos/toxicidade , Polietileno/química , Polietilenotereftalatos , Polimetil Metacrilato , Polipropilenos , Poliestirenos/química , Poliuretanos , Cloreto de Polivinila/toxicidade , Peixe-Zebra
18.
J Hazard Mater ; 438: 129488, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999717

RESUMO

Few studies evaluated long-term effects of polyvinyl chloride (PVC) microplastics (MPs) ingestion in fish. The present study aimed to investigate the integrated biomarker responses in the liver and blood of 162 European seabass, Dicentrarchus labrax, exposed for 90 days to control, virgin and marine incubated PVC enriched diets (0.1 % w/w) under controlled laboratory condition. Enzymatic and tissue alterations, oxidative stress, gene expression alterations and genotoxicity were examined. Additives and environmental contaminants levels in PVC-MPs, control feed matrices and in seabass muscles were also detected. The results showed that the chronic exposure at environmentally realistic PVC-MPs concentrations in seabass, cause early warning signs of toxicological harm in liver by induction of oxidative stress, the histopathological alterations and also by the modulation of the Peroxisome proliferator-activated receptors (PPARs) and Estrogen receptor alpha (ER-α) genes expression. A trend of increase of DNA alterations and the observation of some neoformations attributable to lipomas suggest also genotoxic and cancerogenic effects of PVC. This investigation provides important data to understand the regulatory biological processes affected by PVC-MPs ingestion in marine organisms and may also support the interpretation of results provided by studies on wild species.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Bass/genética , Bass/metabolismo , Biomarcadores/metabolismo , Microplásticos/toxicidade , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
19.
J Hazard Mater ; 440: 129711, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933861

RESUMO

Microplastics (MPs) have the characteristics of large specific surface area, high hydrophobicity and surface charge, so they are easy to combine with other pollutants and cause toxic effects on aquatic organisms. Here, we prepared a polyvinyl chloride-microplastics (PVC-MPs) fragmentation model to simulate the real microplastic state, and characterized its composition, morphology, particle size and zeta potential. On this basis, we used single and compound exposure of PVC and di(2-ethylhexyl) phthalate (DEHP) to explore their effects on hatchability and mortality of zebrafish (Danio rerio) embryos and toxicity to oxidative stress and cardiac development in zebrafish larvae. Herein, PVC-MPs slowed down the hatching rate of zebrafish embryos and induced the death of zebrafish, while DEHP could slow down the induced of death, it had no effect on hatching rate. The PVC-MPs/DEHP single pollution could induce the reactive oxygen species (ROS) and activated the antioxidant defense signaling pathway, while the compound group showed the level of feedback autoregulation of NF-E2-related factor 2 (Nrf2) signaling pathway. The single pollution also could inhibit the expression of genes related to cardiac development, while the combined pollution showed an antagonistic effect. This study provided a theoretical basis for the ecotoxicology and biomonitoring of MPs in the natural state.


Assuntos
Dietilexilftalato , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Microplásticos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Ácidos Ftálicos , Plásticos/metabolismo , Cloreto de Polivinila/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
20.
Aquat Toxicol ; 249: 106234, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797850

RESUMO

The vertical movement of large-size and high-density MPs in the water column is usually along with dynamic changes in light intensity. However, whether the change in light availability affects the bioeffects of MPs on surrounding microalgae is currently unknown. This study investigated the effects of micron-sized polyvinyl chloride (mPVC, 143.5 µm) microplastics, alone and in combination with light intensity (from 7.5 to 162.5 µmol·m-2·s-1) on the growth and physiology of Desmodesmus sp. Although mPVC did not impact microalgal growth under optimal light (40 and 93.8 µmol·m-2·s-1), it could induce a no-contact shading effect, thereby significantly affecting the physiology of Desmodesmus sp. The growth of Desmodesmus sp. exposed to mPVC was enhanced under a high light intensity of 162.5 µmol·m-2·s-1 which can induce growth inhibition but was retarded when under a light inadequacy condition (20 µmol·m-2·s-1), along with a dose-dependent effect. Significantly, the photosynthesis of Desmodesmus sp. was a highly sensitive metabolic pathway to mPVC stress and largely influenced by the plastic particles under different light conditions. Additionally, mPVC modulated the energy metabolism strategy of Desmodesmus sp., depending on exposure dose and external light availability. Our findings provided a critical basis for the risk assessment of MPs in fluctuating light conditions.


Assuntos
Microalgas , Poluentes Químicos da Água , Microplásticos , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA